名義尺度のデータの分析 (クロス表作成・カイニ乗検定)

2011/06/25 心理データ解析演習 M1 熊木 悠人(くまき ゆうと)

□ 名義尺度のデータの扱い

- □ 2×3のクロス表作成
- □ 連関係数
- □ X²検定
- □ 残差分析
- (おまけ)2×2のクロス表
 X²検定が使えないとき
 Fisherの直接法による検定

***名義尺度とは?

変数の分類

- □ 比率尺度
 - (0の点が一義的に決まっている、a÷b=c÷d)
- □ 間隔尺度

(データの変域によらず測定値の間隔が一定、a-b=c-d)

□ 順位尺度

(測定値は大小のみを表す、a>b)

□ 名義尺度

(測定値間に大小関係はない、a=b)

名義尺度とは?

□ 例えば…

- 性別
- ・血液型
- 出身地
- 職種
- 支持政党
- 「Yes」 or 「No」
- 「病気」または「健康」

などなど、名義尺度でしか測れない変数はたくさんある。

名義尺度による研究

Ex.喫煙者は健常者と比べて肺がんになる率 が高いか?

独立変数⇒喫煙者/非喫煙者 従属変数⇒肺がん患者/健常者

従属変数も、数値で表したり、順序をつけた りできない。

⇒名義尺度の変数とみなして分析。

□ 独立変数ごとに度数、比率(%)をクロス表に集計

表1. 肺がん患者と健常者における喫煙者の人数

喫煙者のほうが肺がん患者が多い?

⇒連関係数を見る

2×2のクロス表⇒φ係数 変数のカテゴリー数が3以上⇒クラメールの連関係数

φ係数がとりうる値の範囲は0≦φ≦1
1に近づくほど連関が強いと判断される。

ちなみに、先程のデータでは

注意すべき点

- □ 「各セルの度数が等しい $\Rightarrow \phi=0$ 」 だが、「 $\phi=0 \Rightarrow$ 各セルの度数が等しい」ではない。
- □ 例えば、以下のクロス表のような値であれば、各セルの 度数は全て異なるが、φ=0となる。(連関はない)

	カテコ	計	
	1	2	
カ 1 テ ゴ	40	20	60
リ リ 1 1	60	30	90
計	100	50	150

- X²分布に基づいて考えだされた統計的検定の総称
 1条件で従属変数のカテゴリーが複数ある場合、
 2×2のクロス表、
 条件数が3以上の場合 など、様々なχ²検定がある。
- □ 条件が複数の場合、条件間に対応のないケースで用いる。
- □ 帰無仮説

「各条件によって従属変数の各カテゴリーの度数の比率 に差はない。」

おおざっぱにに言えば、

観測度数と期度数との差を計算しているものである。

		カテ=	ゴリー	計
たたみに 期待 市 物け		1	2	
りるので、新行送数は $n_i n_j$	カ 1 テ	n ₁₁	n ₁₂	n ₁ .
^L II - N で求められる。	ゴ リ 2 	N ₂₁	n ₂₂	n ₂ .
	計	n. ₁	n. ₂	N

カイニ乗検定を行うときの注意

- □ 条件間に対応のないケースのみ使用可能
 - ⇒対応がある場合、マクネマー検定、コクランのQ検定 など、他の検定を使う。
- 観測度数が少ない(N<20)や、期待度数が5未満のセルがある場合、

X²検定は行うべきでない。

 X²検定では、何らかの連関があることは示せても、どのような連 関があるかまでは示せない。

⇒残差分析

Excelデータをダウンロードし、SPSSを立ち上げる。 【ファイル(F)】→【開く(0)】→【データ(A)】から、 さきほどダウンロードしたExcelデータを読み込む

•太郎丸(2005)のデータを一部改変

タの読み込み

11 *無題3 [5	🔢 *無題3 [データセット2] - PASW Statistics データエディタ								
ファイル(E)	編集(E) 表示(Y)	データ(D) 変換(T) 分析(A) グラコ	v© ユーテ	ィリティ(U)	ウィンドウ@	り ヘルプ田)	
			ř 🄚 🗐	81	i				1
								表示: 3 (圖 (3 変数中)
	No	妻の学歴	夫の学歴	var	var	var	var	var	va
1	1	1	1						
2	2	1	1						
3	3	3	3						
4	4	2	3						
5	5	1	1						
6	6	1	3						
7	7	3	3						
8	8	1	1						
9	9	2	1						
10	10	1	1						
11	11	3	1						

□ 値ラベルの入力

変数ビューを開き、 「妻の学歴」の「値」に、1=高校、2=短大、3=大学 「夫の学歴」に、1=高校、3=大学

🏢 値ラベル	
値 (U): 3 ラベル(L): 大学 <u>追加(A)</u> 変更(C) 除去(R)	スペルチェック(S)
ОК [キャンセル] へルコ	ĵ

クロス集計してみる

先程ダウンロードしたデータを用いて、

□ 分析(A)→記述統計(E)→クロス表集計(C)を選択
 □ 行に「夫の学歴」、列に「妻の学歴」を入れる。

□ セル表示の設定で、観測度数にチェック

。デー	タエディタ		■ クロス集計表	
vai		ティ(リ) ウィンドウ(M) ヘルブ(H) 20 度数分布表(F) 21 度数分布表(F) 22 度数分布表(F) 23 定数統計(D) 24 探索的(E) 25 プロス集計表(C) 26 比率(R) 27 正規 (P-P ブロット(P) 27 正規 (Q-Q プロット(Q)	*** クロス集計表 ***	続計量(S)… セル(E)… 書式(F)…
	ROC曲線()		 ○ クラスタ種クラブの表示(B) □ クロス集計表の非表示(T) ○K 貼り付け(P) 戻す(R) キャンセル 	ィルプ

以下のように出力される。

処理したケースの要約

	ケース						
	有効数		欠損		合計		
	N	バーセント	N	バーセント	N	バーセント	
夫の学歴*妻の学歴	148	100.0%	0	.0%	148	100.0%	

夫の学歴と 妻の学歴 のクロス表

度数

		高校	短大	大学	合計
夫の学歴	高校	72	10	4	86
	短大	26	20	16	62
合計		98	30	20	148

クロス表を集計してみる

- ・ 先程のクロス表から仮説を考える
- 1. 妻は自分と同程度の学歴の夫を選ぶ傾向にある。
- 2. 妻は自分よりも高い学歴の夫を選ぶ傾向にある。
- 妻の学歴と夫の学歴には連関はない。
 (統計的に独立である)
 - など… これらの仮説について検討する。

□ ちなみに…

期待度数はSPSSでオプションで出力できる。

□ 「クロス表集計」→「セル」→「度数」の中の「期待」にチェック

		ケース						
	有効数		ク	て損	合計			
	N	バーセント	N	バーセント	N	バーセン		
夫の学歴*妻の学歴	148	100.0%	0	.0%	148	100.0		

処理したケースの要約

夫の学歴 と 妻の学歴 のクロス表							
期待度数							
妻の学歴							
		高校	短大	大学	合計		
夫の学歴	高校	56.9	17.4	11.6	86.0		
	短大	41.1	12.6	8.4	62.0		
合計		98.0	30.0	20.0	148.0		

カイニ乗検定をしてみる

先程と同じように

□ 分析(A)→記述統計(E)→クロス表集計(C)を選択
 □ 行に「夫の学歴」、列に「妻の学歴」を入れる。

「統計量の決定」で 「カイ二乗」にチェックを 入れる。

	定 🔀					
▼ カイ 2 乗(円)						
┌名義データ―――	┌順位データ────					
▶ 分割係数(0)	📃 ガンマ(G)					
📃 <u>P</u> hi および Cramer V(P)	📃 <u>S</u> omers の d(S)					
📃 ラムダ(L)	📃 Kendall のタウ <u>b</u>					
📃 不確定性係数(U)	📃 Kendall のタウ <u>c</u>					
└間隔尺度の名義────	カッパ(K)					
📃 イータ(E)	📃 相対リスク(!)					
	🛅 <u>M</u> cNemar(M)					
■ Cochran と Mantel-Haenszelの統計量(A) 共通オッズ比の検定値①: 1						
〔 続行 】 キャンセル へルプ						

処理したケースの要約

		ケース						
	有効数		2	て損	合計			
	N	バーセント	N	バーセント	N	バーセント		
夫の学歴*妻の学歴	148	100.0%	0	.0%	148	100.0%		

夫の学歴と 妻の学歴 のクロス表

度数

		高校	大学	短大	合計
夫の学歴	高校	72	4	10	86
	大学	26	16	20	62
合計		98	20	30	148

力イ2乗検定

	値	自由度	漸近有意確率 (両側)
Pearson の力イ 2 乗	28.996 ^a	2	.000
尤度比	29.663	2	.000
有効なケースの数	148		

a. 0 セル (.0%) は期待度数が 5 未満です。最小期待度数は 8.38 です。 Pearsonのカイ二乗を見る。 1%水準で有意

2×2のクロス表の場合、「連続修正」の値 】を見る。

ちなみに、期待度数が5未満のセルが ある場合、カイニ乗検定は使うべきでない。

今の検定からわかったこと…

「条件によって、従属変数の各カテゴリーの度数に差が ある。」

⇒これだけでは、

1. 夫と妻は同じくらいの学歴である傾向が強い

2. 夫は妻より学歴が高い傾向が強い

といった仮説は検討できていない。

あくまで、

3. 夫と妻の学歴は統計的に独立である。(関連はない) という仮説を棄却しただけである。

・ 残差とは? セルの観測値と期待値の差

観測値が期待値よりも大きければ正、 観測値が期待値よりも小さければ負、の値をとる。

→調整残差は正規分布に近似するので、検定可能 検定が有意であれば、残差の符号を見ることで、 判断する。

先程と同じようにクロス表集計を開き、 「セルの表示の決定」の中の「残差」の項目を見る。 その中の「調整済みの標準化」にチェックを入れる。

調整残差は標準残差より 正規分布に近似するため、 通常、調整残差を用いる。

🖹 クロス集計表: セル表示(0.設定	×
度数(T)		
■ 期待(E)		
「パーセンテージー	┌残差─────	
🔲 行(R)	📃 標準化されていない(U)	
■ 列(C)	📄 標準化(S)	
📃 全体①	▼調整済みの標準化(A)	
┌非整数値の重み付け――		
◎ セル度数を丸める(№)	◎ ケースの重み付けを丸める(W)	
◎ セル度数を切り捨てる(L) 🔘 ケースの重み付けを切り捨てる(H))
◎なし働		
続行	キャンセル ヘルプ	

□ 結果の出力

処理したケースの要約

	ケース						
	有	劝数	ク	て損	合計		
	N パーセント		N	バーセント	N	バーセント	
夫の学歴*妻の学歴	148	100.0%	0	.0%	148	100.0%	

夫の学歴と 妻の学歴 のクロス表

				妻の学歴			
			高校	大学	短大	合計	
夫の学歴	高校	度数	72	4	10	86	
		調整済み残差	5.3	-3.7	-3.1	\triangleright	
	大学	度数	26	16	20	62	
		調整済み残差	-5.3	3.7	3.1	$\supset \checkmark$	[
合計		度数	98	20	30	148	

力イ2乗検定

	値	自由度	漸近有意確率 (両側)
Pearson の力イ 2 乗	28.996 ^a	2	.000
尤度比	29.663	2	.000
有効なケースの数	148		

a. 0 セル (.0%)は期待度数が 5 未満です。最小期待度数は 8.38 です。 全てのセルの残差が1%水準で有意。 あとは、+か-かを見る。

標準正規分布を使った検定の限界値

	1%水準	5%水準
両側検定	2.58	1.96
斤側検 定	2.33	1.64

Habermanの残差検定

今回の残差分析の結果からわかること

妻が「高校」の場合、夫も「高校」となることが多い。
 妻が「短大」の場合、夫は「大学」となることが多い。
 妻が「大学」の場合、夫も「大学」となることが多い。

⇒「妻の学歴と夫の学歴は同程度である傾向が強い」 という仮説1が確かめられる。

□ 先程の2×3のクロス表では、 普通にカイニ乗の出力を見ればよかったが・・

クロス表が2×2の場合、のため、修正をかけた値を見る必要がある。

また、総度数が極端に少なかったり、期待度数の少ない セルが存在する場合には、χ²検定を用いることは適切で ないので、別の検定を用いなければならない。

⇒(おまけ)ではここを説明。

先程と同様に

- Excelデータをダウンロードし、SPSSを立ち上げる。
- □ 【ファイル(F)】→【開く(O)】→【データ(A)】から、 さきほどダウンロードしたExcelデータを読み込む。
- 変数ビューの「値」を開き
 職種を「1=教師」「2=カウンセラー」
 評価を「1=反社会性重視」「2=非社会性重視」
 に設定。

□ 分析(A)→記述統計(E)→クロス表集計(C)を選択 □ 行に「評価」、列に「職種」を入れる。 □ セル表示の設定で、観測度数にチェック

[データセット1]

⇒クロス表を出力

処理したケースの要約

	ケース							
	有	劝数	ク	て損	合計			
	N パーセント		N	バーセント	N	バーセント		
職種*評価	23	100.0%	0	.0%	23	100.0%		

職種 と 評価 のクロス表

度数

		評		
		反社会的行動 重視	非社会的行動 重視	合計
職種	教師	12	1	13
	カウンセラー	6	4	10
合計		18	5	23

先程と同様に □ 「統計量の決定」で「カイニ乗」にチェックを入れて、 χ²検定を出力。

カイ2乗検定

		値	自由度	漸近有意確率 (両側)	正確有意確率 (両側)	正確有意確率 (片側)	
	Pearson の力イ 2 乗	3.468 ^a	1	.063			
~~~	連続修正 ^b	1.829	1	.176			
	尤度比	3.574	1	.059			
	Fisherの直接法				.127	.089	
	有効なケースの数	23					
a. 2 セル (50.0%)は期待度数が 5 未満です。最小期待度数は 2.17 です。							

b. 2x2 表に対してのみ計算

通常、クロス表が2×2であれば、この「連続修正」の値を 用いる。(イェーツの連続性の修正)

□ しかし、今回は…

	値	自由度	漸近有意確率 (両側)	正確有意確率 (両側)	正確有意確率 (片側)
Pearson の力イ 2 乗	3.468 ^a	1	.063		
連続修正 ^b	1.829	1	.176		
尤度比	3.574	1	.059		
Fisherの直接法				.127	.089
有効なケースの数	23				

力イ 2 乗検定

a. 2 セル (50.0%) は期待度数が 5 未満です。最小期待度数は 2.17 です。

b. 2x2 表に対してのみ計算

極端にケース数が少なかったり、期待度数が5未満のセル があるときには、χ²検定を行うのは適切でない。

⇒Fisherの直接法による検定を行う。(SPSSでは自動で出力)

□ ノンパラメトリック検定

□ 対応のない2条件間の比率の比較を行う。

■ 周辺度数に10前後の小さな値がある、期待度数が0に近い数字がある時に用いる。

- ・ 独立変数または従属変数のカテゴリーが3以上
 ⇒χ²検定を行い、
 出力では「Pearsonのカイニ乗」の値を見る。
- □ 2×2のクロス表
 - ⇒χ²検定を行い、
 - 出力では「連続修正」の値を見る。
- □ 期待度数が5未満のセルが有る場合、
 ⇒「Fisherの直接法」の値を見る。

- □ 浅野 弘明(2010) 『実習で学ぶSPSSと統計学の基礎』 プレデアス出版
- 太郎丸 博(2005) 『人文・社会科学のためのカテゴリカル・データ解析入門』 ナカニシヤ出版
- 森 敏昭 吉田寿夫(2009) 『心理学のためのデータ解 析テクニカルブック』 北大路書房
- Alan Agresti著 渡邉裕之他訳(2003)『カテゴリカル データ解析入門』サイエンティスト社